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Key Messages

•	 Strong droughts in the Amazon have been 
increasing in frequency and intensity, 
from four in a century to four in less 
than 25 years, in concert with increasing 
deforestation and global warming. The 
synergy of droughts, deforestation, fire, 
and forest degradation have the potential 
to drive the Amazon to a tipping point 
where this globally important ecosystem 
may significantly reduce its capacity to 
provide critical services such as water 
recycling, carbon storage, and provision 
of goods for human well-being.

•	 Droughts increase tree mortality, 
and thus biomass loss, imperiling the 
functioning of the carbon sink provided 
by tree growth. Droughts also increase 
animal mortality, especially when river 
levels decrease abruptly and when 
forests are disturbed by fire and forest 
degradation.

•	 Droughts increase the risk of fires, 
with direct impacts such as carbon 
emissions and the loss of biodiversity 
and ecosystem services, while also 
threatening human health and food 
security and feedbacking to global 
warming.
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•	 The socioeconomic impacts of droughts 
are large, and result in social, cultural 
and economic vulnerability. The impacts 
include threats to water security and 
quality, food security, public health, human 
rights, local-to-large scale economies, 
mobility, energy production, river bank 
stability, and human migrations.

•	 The impacts of droughts vary in nature 
and intensity across social communities 
(e.g., Indigenous, afro-descendant, 
ribeirinhos, caboclos, etc.), predominant 
economic activities (e.g., fishing, farming, 
extractivism, urban services), gender, 
age, and the regional differences between 
countries and the Amazon regions (e.g., 
lowlands, Amazonian Andes, and foothills).

•	 There are critical gaps to the knowledge 
required for planning future and immediate 
responses to climate crises. These include 
the lack of comprehensive monitoring of 
Amazonian forests, climate, and hydrology 
to inform adaptation programs, and the 
lack of social, economic, cultural, and 
demographic data at local and regional 
scales, especially concerning vulnerable 
populations.
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RECOMMENDATIONS

•	 Adopt immediately the UNFCCC Paris 
Agreement targets for reducing carbon 
emissions to slow down the increasing 
frequency of droughts. At the same time, 
redirect subsidies and public and private 
investments from carbon-intensive 
activities to those that conserve nature 
reserves and restore forests, and increase 
budget allocations for adaptation and 
management of catastrophes.

•	 Stop deforestation and forest 
degradation, and establish a program 
to identify priority areas that require 
immediate conservation, and reinforce 
the protection of those already formally 
protected, including Indigenous lands and 
the buffer-zones around protected areas. 
All these actions are needed to guarantee 
the water production of the Amazon 
forests and to reduce the occurrence of 
low flows of rivers.

•	 Promote the creation of new climate-
smart jobs in the conservation sector to 
generate alternative revenue streams. 
One such alternative is the adoption of 
diversified agroforestry and agroecological 
systems as part of restoration processes, 
improving food security, natural resources 
management, and alternative livelihoods.

•	 Implement monitoring programs and early 
warning systems for droughts, including:

•	 Global and regional Earth System 
models and continental hydrological 
models from the Andes to the Atlantic 
oceans

•	 Detection of early signs of animal and 
vegetation stress due to droughts;

•	 Policy harmonization on integrated 
fire management, and real-time fire 
monitoring and data sharing across 
jurisdictions.

•	 Implement the mandates established 
in 2022 by the UNFCCC regarding the 
human rights-based and climate justice 
approach. Assess the vulnerability and 
exposure of populations through an 
intersectoral approach for the design 
of policies; actions should be grounded 
in a comprehensive understanding of 
the local realities of different socio-
economic groups and regions.

•	 Implement the Loss and Damage and 
the Adaptation Funds, and improve 
funding for actions on drought mitigation 
and adaptation through international 
and national funds. Special attention is 
required for programs focused on:

•	 Training, education, fire vigilance, and 
firefighting;

•	 Developments on science, technology, 
and innovation for better water 
treatment strategies and higher 
storage capacities;

•	 Improving food security at local scales;

•	 Science, technology, and monitoring 
on diseases born or aggravated by 
droughts.

•	 Invest in capacity building of local people 
and governments to directly access diverse 
financial mechanisms for adaptation, and in 
co-production of solutions with local rural 
and urban populations to manage drought-
caused disasters. Prioritize research and 
monitoring efforts to fill environmental, 
ecological, and socioeconomic data gaps.
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1. Climatic and Hydrological 
Dynamics

Natural causes of droughts. Since the 
beginning of the 21st century four extreme 
droughts have occurred in the Amazon. 
These droughts were each classified as a 
“one-in-a-100-year event” at the time of 
occurrence, and yet, each was surpassed by 
the next one 1–4. Most of the severe droughts 
in the Amazonian region are associated with 
anomalous sea surface temperatures (SST) 
in the Equatorial Pacific, known as the El Niño 
event. However, droughts in 2005 and 2010 
were largely induced by high SST anomalies 
in the Tropical North Atlantic (TNA). Both El 
Niño and warm TNA inhibit rainfall over the 
Amazon 5,6. Another contributor to droughts is 
the warm phase of the Atlantic Multidecadal 
Oscillation (AMO) 6,7, characterized by a 
cyclical variation of the large-scale oceanic 
and atmospheric conditions in the TNA. 
The majority (80%) of the historical severe 
hydrological droughts in the Amazon basin 
coincide with warm phases of AMO (1925-1970 
and since 1995), weakening in the moisture 
transport into and inside the Amazon east of 
the Andes by means of atmospheric rivers 
(“flying rivers”)8,9 (BOX 1). The atmospheric 
rivers transport a tremendous amount of 
water in the form of vapor, greater even than 
the flow of 19 Gt of water out of the Amazon 
River itself.

Natural climatic variability vs human 
induced droughts. Although droughts have 
a natural climatological component and have 
always happened in the Amazon, the frequency 
and intensity of droughts are increasing, 
mostly due to human-induced global warming, 
deforestation, and forest degradation 10. 
Modeling and observational studies suggest 

that the Amazonian droughts occur via a 
decline in precipitation and late onset of the 
rainy season (longer dry season) during El 
Niño and/or TNA years. On the other hand, 
increasing global mean surface temperature 
(i.e. global warming) reduces precipitation 
and strongly elevates local temperatures, 
thus increasing water loss through increasing 
evapotranspiration, leading to the large water 
deficits in terrestrial and aquatic systems 11. 
Climate change has increased the likelihood 
of hydrological droughts (which impact river 
flow) by a factor of 10, while agricultural 
droughts (which impact agricultural activities) 
have become about 30 times more likely 11. 
Moreover, multiple years of deforestation 
in the Amazon have produced extensive dry 
land surfaces, where extensive pastures and 
croplands significantly reduce water return to 
the atmosphere when vegetation senesces in 
the dry season. These contribute ~4% to the 
atmospheric drying trend, with deforestation-
drought feedback increasing as deforestation 
accumulates 12,13.

In 2023, the Amazon experienced an extreme 
drought and warmth situation. The integrated 
drought index (combining meteorological, 
hydrological, and agricultural droughts) of 2023 
was classified as severe-extreme in the Western 
Amazon region of Brazil, over the Bolivian and 
Peruvian Amazon regions, and extending to 
most of the Amazon south of 5°S (Figure 1 a, 
b) 2. A recent study shows that the transition 
from La Niña in 2022 to El Niño in 2023 is 
related to this historical event 2. In addition, an 
exceptionally warm TNA 2 and the background 
global warming signal 12 exacerbated the El 
Niño impacts over the region during the austral 
winter and Spring of 2023, such that El Niño 
and climate change were each responsible for 
50% of the precipitation reduction.	
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Figure 1. a) Area affected by droughts in the Amazonian region since 1981; b) areas affected by hydrological drought as represented by 
the Integrated Drought Index (IDI 99), using SPI-12. The IDI combines the Standardized Precipitation Index (SPI), and Available Soil Water 
(ASW) together with the Vegetation Water Supply Index (VSWI) and thus represents the response of meteorological, hydrological, and 
agricultural droughts.



Box 1. Definitions

Agricultural drought: conditions that result 
in adverse crop responses, usually because 
of limited soil moisture and high transpiration 
demand to plants.

Atlantic Multidecadal Oscillation (AMO): 
the AMO is an ongoing series of long-duration 
changes in the sea surface temperature of 
the North Atlantic Ocean, with cool and warm 
phases that may last for 20-40 years at a 
time and a difference of about 1°F between 
extremes. These changes are natural and have 
been occurring for at least the last 1,000 years 
(https://www.aoml.noaa.gov/phod/amo_faq.php)

Atmospheric rivers (“flying rivers”): relatively 
long, narrow regions in the atmosphere – like 
rivers in the sky – that transport most of the water 
vapor outside of the tropics. (https://www.noaa.
gov/stories/what-are-atmospheric-rivers)

Drought: a period of abnormally dry weather 
sufficiently long to cause a serious hydrological 
imbalance. From a climatic point of view, a 
drought results from a shortfall in precipitation 
over an extended period of time, from the 
inadequate timing of precipitation relative to 
the needs of the vegetation cover, or from a 
negative water balance due to an increased 
potential evapotranspiration caused by high 
temperatures 97.

El Niño: refers to a above-average warming of 
the sea surface temperatures, in the central and 
eastern tropical Pacific Ocean. This leads to the 
low-level surface winds, which normally blow from 
east to west along the equator (“easterly winds”), 
to instead weaken or, in some cases, start blowing 
the other direction. El Niño recurs irregularly, from 
two years to a decade, and no two events are 
exactly alike. El Niño events can disrupt normal 
weather patterns globally. (https://www.usgs.gov/
faqs/what-el-nino-and-what-are-its-effects)

Hydrological drought: prolonged period 
of below-normal precipitation, causing 
deficiencies in water supply, as measured by 
below-normal stream flow, lake and reservoir 
levels, groundwater levels, and depleted soil 
moisture content.

Hydraulic failure: the loss of the capacity to 
conduct water through the plant vessels beyond 
a threshold for survival, that occurs during 
drought-induced water stress.

Igapó: vegetation that is seasonally flooded by 
river waters poor in sediments and nutrients, 
descending from the Guiana and Brazilian 
Shields.

La Niña: refers to the periodic cooling of ocean 
surface temperatures in the central and east-
central equatorial Pacific. Typically, La Niña 
events occur every 3 to 5 years or so, but on 
occasion can occur over successive years. La 
Niña represents the cool phase of the El Niño 
cycle (https://www.weather.gov/iwx/la_nina)

Mega-wildfires: fires spreading over 10,000 ha 
or more, arising from single or multiple related 
ignition events 98.

Sea Surface Temperatures (SST): sea 
surface temperature (SST) is defined as the 
temperature of the top few millimeters of the 
ocean. (https://ecowatch.noaa.gov/thematic/
sea-surface-temperature) 

Tipping-point: for a system that has been 
disturbed, this is the point of no-return to 
the original conditions. Here, it applies to the 
point beyond which large areas of the Amazon 
no longer have sufficient rainfall to support 
broadleaf evergreen forests.

Várzea: Vegetation that is seasonally flooded 
by river waters rich in sediments and nutrients, 
descending from the Andes.

https://www.aoml.noaa.gov/phod/amo_faq.php
https://www.noaa.gov/stories/what
https://www.noaa.gov/stories/what
https://www.usgs.gov/faqs/what
https://www.usgs.gov/faqs/what
https://www.weather.gov/iwx/la_nina
https://ecowatch.noaa.gov/thematic/sea
https://ecowatch.noaa.gov/thematic/sea


drops in their levels, or just simply dried up. In 
October 2023, the Rio Negro level in Manaus 
recorded its lowest level since measurements 
began in September 1902, 12.70m (the 
average annual minimum water level was 17.64 
m for the 1902-2022 period). In the Peruvian 
Amazon, the Huallaga River at Tingo María 
showed an anomaly of -45% in the discharge 
in October 2023. The Mamoré-Guaporé and 
Madeira rivers in Bolivian territory remained 
very low due to deficient rainfall from July 
2022 to June 2023. Generally, droughts 
related to El Niño events have a greater effect 
on rivers with headwaters in the northern 
hemisphere, as the period of reduced rainfall 
coincides with the natural low water period. 
However, the 2023 drought started much 
earlier due to the many synergetic effects 
reviewed above, and thus affected a broader 
range of rivers across the Amazon.

All the study regions in the Amazon have 
evidence of statistically significant warming 
trends during the last four decades (Figure 
2b). Warming trends are higher for the Sep-
Oct-Nov season than for the Jun-Jul-Aug 
season, and higher for the Southern and 
Eastern than the Northern and Western 
Amazon. Although the time series shows 
peaks of increased temperatures related 
to different drought episodes, it was in 
2023 when the highest values of positive 
air temperature anomalies were observed 2. 
Six heat waves during the 6-month period 
between June and November of 2023 in the 
western and northern regions exacerbated 
the effects of the lack of precipitation. The 
southwestern Amazon had a warmer austral 
winter and spring due to heat domes of hot 
and dry air. Maximum temperatures were 
between +2oC to +5oC above average over 
the affected Brazilian states of Amazonas, 
Rondônia, Roraima, and Acre in Sep-Oct-Nov 

Impacts on river levels and air 
temperature. Over the last 120 years, 18 
severe floods and 12 extreme hydrological 
droughts have been recorded at the port of 
Manaus, the only available series of Amazonian 
water levels that spans more than 100 
years 1–3. Analysis of this dataset indicates a 
significant trend of increasing frequency and 
magnitude of extreme floods over the last 
120 years, including the largest water level 
ever measured in Manaus in 2021 3. On the 
other hand, no long-term trend is identified 
regarding increasing hydrological droughts, 
although the number of extreme droughts has 
increased since 1995: six extreme droughts 
occurred between 1995 and 2023, compared 
to seven in the whole period of 1903-1994 2. 
Considering the critical level of emergency 
at the Manaus port for floods (>29 m) and 
hydrological droughts (<15.8 m), there is a 
significant increase of the annual amplitude 
of about 150 cm during the last 30 years, 
compared to the period before (Figure 2a). 
Regarding the duration of emergency of 
both extremes, until the 1990s, hydrological 
droughts had more impacts on riverine 
populations than floods, while floods have 
been stronger in the 21st century. The mean 
duration of flood emergencies is in general 
longer (53 ± 24 days) compared to droughts 
(36 ± 19 days).

This scenario was changed by the 2023-
24 drought. Most of the main rivers in the 
Amazon, including the Solimões, Purus, Acre, 
and Branco rivers all suffered from extreme 

However, the strong water deficits in land and 
aquatic systems were almost entirely due to 
increased global temperature 11. The intensity 
of the 2015-16 drought has also been linked to 
anthropogenic causes 14.



Figure 2 a) Annual maximum (floods, blue lines) and minimum (hydrological droughts, red) water levels of the Rio Negro monitored 
at the port of Manaus from 1902 to 2023 (central Amazon). Calendar years indicate extreme flood (>=29 m) and drought (<15.8 m) 
events (Source: J. Schöngart, INPA). b) Temporal series of monthly surface air temperature anomalies averaged over the seasons, JJA 
(June, July, and August) and SON (September, October, November) from 1980 to 2023. The dashed line refers to the linear trend, with 
the slope value (slp) in ºC per decade. The slope’s statistically significant values (p<0.05) are marked with an asterisk. Data points of 
anomalies are statistically different from zero at 1s and 2s levels and are colored yellow and red, respectively. Values of temperature 
anomalies were extracted from ERA5-Land reanalysis.  



2. Ecological Impacts of Droughts

Impacts on terra-firme ecosystems. 
Continuous long-term (~50 y) monitoring 
of non-flooded Amazonian forests and 
artificially-imposed droughts have shown 
the sensitivity of Amazonian forest’ trees 
to low water supply, with increased tree 
mortality being the most consistent response 
across studies 16–18. Remote sensing studies 
also suggest that droughts decrease the 
photosynthetic capacity of trees, and the 
magnitude of this effect has been increasing 
through time 19. The most sensitive plants are 
those with low resistance to hydraulic failure, 
the largest trees more exposed to drier 
atmospheres and short-lived trees (as they 
both tend to have lower hydraulic resistance), 
and the smallest trees situated in forests 
within the driest Amazon regions, because of 
shallow roots 18–23.These differential mortality 
patterns have been increasing the number 
of drought-tolerant species while decreasing 
the number of drought-intolerant species 24, 

2023 trimester. Extreme low water levels 
and high incoming radiation caused water 
temperature in lakes (e.g. Lake Tefé, the 
central Amazon) to reach more than 40°C.

Global warming, combined with the AMO 
warm phase and increasing sea surface 
temperatures of the TNA are directly related 
to the increase in air temperature and the 
length and intensity of the dry season (in the 
order of 1-2 weeks), especially over Amazonian 
regions undergoing large-scale deforestation 
and fire 15. Combined, these processes are 
likely to reduce the return period of severe 
drought events in the upcoming years.

which face the risk of disappearing. Repeated 
droughts will likely lead Amazonian forests 
to be dominated by a lower number of tree 
species, shorter in stature, and with higher 
hydraulic resistance.

Forests that naturally have longer dry 
seasons (dominant in the southern half of 
the Amazon) have been the most affected by 
strong droughts (Figure 3), with increased 
tree mortality and consequently biomass loss 
25,26. The negative effects of droughts are 
exacerbated by deforestation in the eastern 
and southern Amazon 12,27,28. At the same time, 
forests with constant access to groundwater 
supply (in valleys and lowlands) or forests that 
are able to exploit deep soil water reserves 
have shown more resilience to droughts, 
with no significant loss of biomass 29,30. The 
carbon sink provided by tree growth across 
the Amazon (estimated in 0.42 to 0.65 tons of 
C per hectare per year between 1990-2007, 
around 25% of the terrestrial sink) has been 
decreasing in the past two decades 30, but 
was especially affected by droughts, dropping 
to near zero shortly after the 2009-2010 and 
2015-2016 droughts, due to lower tree growth 
and higher tree mortality 24,25. This means that 
droughts can offset the carbon sink of forests, 
accelerating global warming. Moreover, the 
negative impacts of low water supply interact 
with those of increased temperature 31, such 
that droughts with multiple heatwaves, as in 
2023, have the potential to accelerate forest 
biomass loss. Around 21% of the Amazon has 
been estimated to be degraded by the extreme 
droughts of this century 32, without considering 
the impacts of the 2023-24 event.

Changes of forest structure caused by 
droughts – e.g. decreased canopy cover, 
disruption of understory regeneration – lead 
to a decline of terrestrial and aquatic fauna 

23.These


Figure 3 Ecological vulnerability of Amazonian regions based on the impacts of the 2015-16 drought and the intrinsic vulnerability of 
trees. The maps show that higher water deficit during droughts, climatic and hydraulic risks, and the combined risk of tree death 
increase towards the south and eastern Amazonian regions, with some patches of high risk in the central-eastern region. Water 
deficit was calculated as the Maximum Cumulative Water Deficit (MCWD) for the major droughts: 2005, 2009 and 2015. Climate risk 
was projected based on carbon-loss due to tree mortality from the 2015-16 drought, as a function of the historical annual water deficit 
26. Hydraulic risk represents the risk that trees will lose the capacity to conduct water 100. The combined forest vulnerability to drought is 
the overlap of the Climatic and Hydraulic Risks, warmer colors indicate higher combined vulnerability to both factors. 

that depend on intact forests, which can in 
turn lead to empty forests 33–35. Drought-
induced changes in tree phenology may 
decrease fruit availability, leading to higher 
mortality rates of frugivore animals. Droughts 
also lead to physiological stress of arboreal 
fauna, decreasing the time dedicated to 

feeding with the ultimate effect of increasing 
mortality rates 35. Frequent sequential extreme 
events (droughts and floods) increase the 
mortality rates of several terrestrial mammals 
35(white-lipped peccary, collared peccary, 
red brocket deer, black agouti, paca, giant 
anteaters, and nine-banded armadillo) 



that are key for the regulation of forest 
diversity 36,37. Terrestrial and aquatic species 
are affected differently, as long periods of 
flooding have higher impacts on terrestrial 
species, decreasing population of terrestrial 
species such as white-lipped peccary 
and collared peccary, while long periods 
of drought can decrease aquatic animals 
populations of species such as manatees, river 
dolphins and several fishes 35,38.

Impacts on seasonally flooded 
ecosystems. Hydrological drought 
conditions in the Amazonian floodplains vary 
considerably as these areas experience low 
water levels in different periods of the year, 
depending on their geographic location, 
which has strong implications for plant-water 
availability and fire vulnerability. Droughts 
induced by severe El Niño events (December–
March) coincide with low-water periods in the 
middle-upper Negro River, Branco River, and 
other Guyana Shield tributaries dominated by 
igapós 27. In contrast, várzea floodplains are 
mainly located in the southern hemisphere 
and tend to be less vulnerable to El Niño-
induced drought and fire hazards due to 
already increasing water levels during this 
period 39. In regions where low-water stages 
coincide with the dry season, drought can 
increase floodplain tree mortality, especially 
of shallow-rooted seedlings and young trees 
of igapós. Igapós are also more vulnerable 
to droughts due to the mostly sandy or silty 
soils 40 which drain faster than the clay soils of 
várzeas – and the generally very shallow (≤ 40 
cm) 41 rooting systems.

The forest canopy in the igapó is generally 
less stratified and lower, resulting in lower 
relative air humidity at the forest floor 42,43. 
This can cause these ecosystems to be highly 

vulnerable to fires 44,45, as documented in 
the severe droughts of 1925-1926, 1982-
1983, 1997-1998 and 2015-2016 44,46,47. 
The dry hydro-meteorological conditions 
generated by El Niño favors the spreading 
of understory fires along the soil surface, 
leading to massive tree mortality 43. Further 
insights into the vulnerability of igapó trees 
to severe drought are provided by dams, 
such as Balbina, which induced a prolonged 
severe artificial drought in the downstream 
igapó floodplain causing widespread tree 
mortality 48. Secondary forests extending for 
several dozen kilometers along the Uatumã 
River downstream of the Balbina dam 
probably established and developed after the 
mass mortality of the former igapó forests 
49,50. In contrast, increased tree growth has 
been observed in the central Amazonian 
várzea during El Niño events, as the growing 
season of tree species during the non-
flooded period is extended 51,52. Based on 
these observations, we can assume that the 
ecological impacts for floodplain vegetation 
caused by the historical drought event of 
2023 might be more intense in the igapó 
forests compared to the várzea forests.

Although occupying a smaller fraction of the 
Amazon (about 6-10% 53,54), floodplains are 
capable of supporting a high abundance of 
animals and are essential for some stages 
of their life cycles, since many Amazonian 
aquatic species (e.g. manatees and many 
fishes, including arapaima) migrate to more 
permanent water bodies in the dry season 

55–58. However, extreme droughts cause 
the rapid isolation of water bodies from 
previously connected environments, and 
these migratory animals can become trapped 
in isolated and shallow water bodies 53, which 
could lead to over-harvesting of animals 
trapped in shallow lakes. During the 2023 



drought, however, hundreds of mammals 
(e.g., river dolphins) 59 were killed due to 
increased water temperature and decreased 
oxygen concentration. Droughts also have 
long lasting effects on the aquatic fauna, 
such as the changes in the fish species’ 
composition and functional types caused by 
the 2005 event that were still present nearly 
10 years later 60. In addition, the reduction 
of rivers’ water volume may increase the 
risk of fire in the surrounding areas. There 
is evidence that forest cover is essential for 
maintaining fish diversity and productivity 
58,60, so the loss of vegetation may increase 
the rate of siltation, making water bodies 
shallower and interrupting the connections 
between water bodies.

Droughts and fire. Droughts greatly increase 
fire incidence in the Amazon, as reported in 
2005, 2010 and 2015 61, and 2023 62, leading 
to a positive feedback loop between fires and 
droughts. High water deficits, widespread tree 
mortality, and litterfall generated by droughts 
increase fuel availability that turns once humid 
forests into more flammable systems. During 
2005 (14,584 km2) and 2010 (32,815 km2), the 
total forest area burned was two to four times 
the mean for the 2001–2018 period 32. In the 
2015 extreme drought, fire extended beyond 
the Arc of Deforestation, hitting areas in the 
central Amazon not previously impacted 62. The 
lower Tapajós region in the Eastern Amazon – 
the epicenter of that drought – experienced 
unprecedented mega-wildfires, which burned 
around 10,000 km2 of forests 61.

Carbon emissions are among the main impacts 
of forest fires during extreme Amazonian 
droughts. Forest fires have been estimated 
to be responsible for around a third of the 
carbon emissions attributed to deforestation 

during the 2003–2015 period and are more 
than half as great as those from old-growth 
deforestation during drought years 62. A 
single understory forest fire can reduce 
aboveground carbon stocks by up to 50% 63. In 
the lower Tapajós region, the 2015–16 El Niño 
and associated fires resulted in the estimated 
death of >2.5 billion woody stems, leading to 
the emission of 495 ± 94 Tg CO2, with globally 
relevant impacts 64. Such an area corresponds 
to only 1.2% of the Brazilian Amazon, but the 
emissions were larger than the mean annual 
CO2 emissions from deforestation across the 
whole Brazilian Amazon between 2009 and 
2018 64. In addition, wildfires can turn a forest 
into a net source of carbon for many years 
following the fire 64, resulting in ~25% less 
stored carbon even after 30 years. Recurrent 
fires, which become more likely across time as 
more of the region is affected by droughts and 
fires, can lead to carbon losses of over 80% of 
aboveground carbon 63.

Wildfires have significant effects on 
biodiversity, leading to high levels of 
community turnover, with the loss of sensitive 
species of high conservation value and 
functional importance, such as birds with 
smaller range sizes and plants with higher 
wood densities 64,65. Recurrent fires profoundly 
change the forest structure and species 
composition, with larger changes for birds, 
beetles, trees, and frugivore and granivore 
mammals 66–68, potentially leading to the loss 
of ecological services and lower food security 
for the traditional people who depend on 
forest products 34. The high frequency of 
extreme droughts can turn Amazon forests 
into fire-prone ecosystems making fires a 
relevant driver of a possible tipping-point of 
the Amazon 69.



3. Socioeconomic Impacts of 
Droughts

Droughts pose great challenges to 
Amazonian people and can lead to both 
short-term and long-lasting socioeconomic 
impacts, particularly to the most vulnerable 
Indigenous Peoples and Local Communities 
(Figure 4). Droughts affect the livelihoods 
of the ~47 million people that live in the 
Amazon region in many ways: threats to water 
security and water quality (especially access 
to drinkable water) in rural and urban areas, 
food insecurity, uncertainties around the 
harvest of some natural products, impacts 
in local to regional economies, public health 
issues, interruption of transportation, decline 
in energy production, access to human 
rights, changes in cultural habits, and even 
compounding effects with other hazards such 
as river bank collapse. Within the Brazilian 
Amazon, approximately 8.5 million people, 
including Indigenous Peoples and Local 
Communities, inhabit areas with limited 
infrastructure and insufficient services to 
cope with the impacts of climate extremes 66.

With rivers being the main transportation 
route in the region, thousands of people 
in both urban and rural areas are directly 
affected by isolation when droughts decrease 
river levels 69, as occurred in 2005 70,	
especially those living in more remote 
tributaries. In 2023, around 150,000 families 
and more than 600,000 people 71,	
including Indigenous Peoples and the rural 
and river dwellers who depend on river 
transport to access food, water, medical 
assistance, and markets to sell products, were 
impacted by drought, becoming isolated for 
several months. For instance, in the State 
of Amazonas, Brazil, all 62 municipalities 
remained in a state of emergency for 

many months. Another transport-related 
externality is the increase in the prices of 
goods, including food – the greater the 
distance of sales locations from distribution 
centers, generally located in large cities 
such as Manaus and Iquitos, the higher the 
price of goods will be during droughts. This 
phenomenon is not new: in the Brazilian 
Amazon in 2010 for example, 62,000 families 
felt the impact of drought, demanding 
government investment in the order of US 
$13.5 million in emergency aid 72. Between 1997 
and 2023, the state of Acre, Brazil experienced 
five instances where municipalities or states 
declared a state of emergency due to 
drought-induced water crises 73. Furthermore, 
low river levels are also linked to disastrous 
landslides of the riverbanks, destroying 
houses and killing people 74.

Impacts of water shortage in transportation 
also affect household energy availability, 
which generally depends on fuel delivered 
by boat. For example, the energy shortage 
during the 2023 drought in São Gabriel da 
Cachoeira, upper Rio Negro – the city with the 
third largest Indigenous population in Brazil – 
had a cascading effect on the functioning of 
other basic services such as healthcare and 
education. Operation of hydroelectric dams 
is also affected by low river levels. Ecuador 
introduced power cuts of several hours a day 
for two months due to the severe drought of 
2023-2024 that hit the production of some 
hydroelectric plants . Manaus also experienced 
6 hours of energy cuts daily due to the low 
level of the Balbina dam during the 1997 
drought 75.

From uplands to lowlands, the Amazon food 
production and security are largely impacted by 
droughts and accompanying heatwaves. High air 
temperatures harm staple crops such as cacao, 



cassava, and extractive 
products such as açaí 
76,77, but also the large 
soy monocultures in 
deforested regions 
78. Fishing is affected 
due to challenges 
in accessing fishing 
lakes, transportation 
to the main markets, 
and the high mortality 
of fish during these 
events 72,79–82. The 
lack of access to 
markets hampers the 
commercialization 
of the communities’ 
production 76.

Health impacts caused 
by lack of access to 
medical services, 
increase of disease 
vectors, malnutrition, 
and fire smoke are a 
major concern during 
extreme droughts. 
Additionally, high air 
temperatures are very 
impactful to Amazonian 
people’s health. Rural 
communities have 
been changing working 
hours to avoid the 
warmest afternoon 
hours, while classes 
have been canceled 
in schools due to 
excessive heat. Child 
hospitalization due to 
respiratory diseases 
caused by high fire 
incidence peaked in 

Figure 4. Impacted sectors and transition pathways towards reduced socioeconomic impacts and 
better solutions for future droughts in the Amazon.



drought-affected municipalities in 2005 83. 
The amplification of fire occurrences during 
severe droughts poses significant economic 
repercussions; for example, the Brazilian state 
of Acre alone had an estimated total economic 
loss of approximately US$ 243.36 ± 85.05 
million (7.03 ± 2.45% of Acre’s GDP) during the 
2010 drought 84. Waterborne diseases such as 
diarrhea are common during extreme droughts 
because of poor water quality. Compound 
drought-heatwave events can also lead to 
increased incidence of vector-borne diseases 
such as dengue 85. Indeed, water insecurity 
is high during these dry periods because of 
inadequate infrastructure to access potable 
water and lack of public policies to solve this 
issue. Communities often have only small 
rainwater storage facilities 86, depending on 
the adjacent water bodies – usually polluted – 
during droughts 87. In 2023, even communities 
with groundwater wells remained without access 
to water and dependent on supply by local 
civil defenses. Furthermore, in general, several 
Amazon urban areas also present high levels of 
water insecurity.

As extreme droughts and floods become 
increasingly more frequent, climate-related 
migration has been reported from floodplains 
to uplands, and from rural to urban areas 
70,88. Seasonal and permanent migratory 
movements, from sub-regional (e.g., from 
communities to urban areas) to regional 
scales (e.g., from smaller to larger urban 
areas), occur in the Amazon due to different 
factors, including search for better access to 
education and other basic services 89, posing 
additional challenges for the individuals’ 
capacity to adapt to extreme climatic events.

The large social and cultural diversity across 
the Amazon means a very heterogeneous 

pattern of drought-related socioeconomic 
impacts, including the transfer of traditional 
knowledge. The differences in social groups 
(e.g., Indigenous, afro-descendant, riverine 
(ribeirinhos, caboclos, etc.), predominant 
economic activities (e.g., fishing, farming, 
extractivism, urban services), gender and 
age, and the regional differences between 
countries and the Amazon regions (e.g. 
lowlands, Amazonian Andes, and foothills) 
require site-specific understanding and 
adaptation strategies to reduce the impacts 
of socio-climatic disasters. For instance, while 
climate extremes have increased rainfall and 
floods in the coast and Western Andes of 
Ecuador, droughts have reached the northern 
and eastern parts of the country. Populations 
in urban areas are impacted differently than 
rural communities.

Remote communities are often ignored by 
climate policies and have limited access to 
information and participation in the climate 
debate 88,90, as well as their right of consent on 
the adopted strategies 91. This calls attention 
to the need of improving our understanding 
of the vulnerability of these people at regional 
and local scales 87,92, and co-producing 
adaptation measures 87,92. While Amazonian 
people generally agree on the perception of 
ongoing environmental and climate changes, 
such as increasing summer air temperatures, 
the perception about climate extremes differs 
among cultures 88. Many communities report 
a higher unpredictability of climate and river 
regimes 77 which hampers a proper adaptation 
to ongoing changes.	

The socio-economic impacts of droughts in 
the Amazon region demand large and varied 
investments. At the national level, there 
is a notable disparity in budget allocation 



Mitigation of droughts requires serious effort 
to control global warming, deforestation, and 
forest degradation, as well as wide efforts on 
forest restoration 95,96. Adaptation to droughts 
requires multisectoral approaches and 
strong governance, including interventions in 
infrastructure, agriculture, sanitation, potable 
water access (such as rainwater cisterns, 
more and deeper wells, nanotechnology-
based filters, and distribution of emergency 
water treatment kits to remote communities), 
and health, and the establishment of early 
warning systems of droughts to minimize 
socio-economic and environmental impacts 
and losses. These require climate financing 
through adaptation, loss & damage budgets, 
national and local budgets, and green 
initiatives, as well as capacity building of 
local populations, and the development of 
socio-bioeconomy-based initiatives and 
forest restoration to tackle current and future 
challenges posed by droughts in the Amazon. 
It is necessary to foster collaboration between 
scientific and traditional knowledge systems, 
government, civil society, and the private 
sector to maximize effectiveness. This holistic 
approach will help to address identified issues 
and bolster our capacity to mitigate the 
impacts of droughts in the Amazonian region.

to address climate-related disasters. In 
2022, Amazon countries like Bolivia, Brazil, 
Colombia, Ecuador, and Peru collectively 
spent only US$ 287,829,541 on disaster 
management, significantly less than the US$ 
14,188,053,010 invested in carbon-intensive 
activities such as fossil fuel production – it 
is important to note, however, that these 
expenses are related to the whole countries, 
going beyond the Amazon region itself 94. 
Colombia allocated the highest proportion 
of its budget, at US$ 142 million (0.19% of its 
total budget), followed by Ecuador with US$ 
14 million (0.03%), Peru with US$10 million 
(0.02%), Brazil with US$ 121 million (0.01%), 
and Bolivia with US$ 28,000 (0.0001%). This 
discrepancy shows that while the allocation 
of resources is limited, according to the 
Sustainable Finance Index, the cost for loss 
and damages may be higher with time. At 
the same time, as the Amazon gets closer 
to a tipping point, the cost associated to 
the increasing frequency and intensity of 
droughts is estimated to result in a loss of 45 
billion dollars in the Gross Domestic Product 
up to 2050 across the largest countries of 
the basin (Brazil, Peru, Colombia, Bolivia, and 
Ecuador), mostly due to the loss of crops and 
the consequences of fires 93.

All the socioeconomic impacts explained, 
and others not detailed, not addressed in the 
literature, or even unknown, can be addressed 
and understood under a broad umbrella of 
a human-rights approach. It is important, 
for example, to consider the mandates 
established in 2022 by the UNFCCC regarding 
the climate justice approach, including “losses 
and damages”, and the rights of children 
and future generations to development. 
To date, national and local government 
responses to drought events have historically 

Conclusions

prioritized emergency relief assistance 71,94. 
The current situation, however, requires that 
climate mitigation and adaptation plans are 
developed and fully implemented, and that 
these plans incorporate coping strategies 
in advance, considering future events, and 
establishing long-term adaptation strategies 
through co-production approaches with local 
populations 89.
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